The process of analyzing audio signals in search of cetacean vocalizations is in many cases a very arduous task, requiring many complex computations, a plethora of digital processing techniques and the scrutinization of an audio signal with a fine comb to determine where the vocalizations are located. To ease this process, a computationally efficient and noise-resistant method for determining whether an audio segment contains a potential cetacean call is developed here with the help of a robust power calculation for stationary Gaussian noise signals and a recursive method for determining the mean and variance of a given sample frame. The resulting detector is tested on audio recordings containing southern right whale sounds and its performance is compared to a contemporary energy detector and a popular deep learning method. The detector exhibits good performance at moderate-to-high signal-to-noise ratio values. The detector succeeds in being easy to implement, computationally efficient to use and robust enough to accurately detect whale vocalizations in a noisy underwater environment.
Read full abstract