This article advocates for mobilizing pathogen genomic surveillance to contain and mitigate health threats from infectious diseases and antimicrobial resistance (AMR), building upon successes achieved by large-scale genome sequencing analysis of SARS-CoV-2 variants in guiding COVID-19 monitoring and public health responses and adopting a One Health approach. Capabilities of laboratory-based surveillance and epidemic alert systems should be enhanced by fostering (i) universal access to real-time whole genome sequence (WGS) data of pathogens to inform clinical practice, infection control, public health policies, and vaccine and antimicrobial drug research and development; (ii) integration of diagnostic microbiology data, data from testing asymptomatic individuals, pathogen sequence data, clinical data, and epidemiological data into surveillance programs; (iii) stronger cross-sectorial collaborations between healthcare, public health, animal health, and environmental surveillance and research using One Health approaches, toward understanding the ecology and transmission pathways of pathogens and AMR across ecosystems; (iv) international collaboration and interconnection of surveillance networks, harmonization of laboratory methods, and standardization of surveillance methods for global reporting, including on pathogen genomic variant or strain nomenclature; (v) responsible data sharing between surveillance networks, databases, and platforms according to FAIR (findability, accessibility, interoperability, and reusability) principles; and (vi) research on genomic surveillance system implementation and its cost-effectiveness for different pathogens and AMR threats across different settings. Regional and global One Health policies and governance initiatives should foster the concerted development and efficient utilization of pathogen genomic surveillance to protect the health of humans, animals, and the environment.
Read full abstract