We study general freeze-out scenarios where an arbitrary number of initial and final dark matter particles participate in the number-changing freeze-out interaction. We consider a simple sector with two particle species undergoing such a thermal freeze-out; one of the relics is stable and gives rise to the dark matter today, while the other one decays to the Standard Model, injecting significant entropy into the thermal bath that dilutes the dark matter abundance. We show that this setup can lead to a stable relic population that reproduces the observed dark matter abundance without requiring weak scale masses or couplings. The final dark matter abundance is estimated analytically. We carry out this calculation for arbitrary temperature dependence in the freeze-out process and identify the viable dark matter mass and cross section ranges that explain the observed dark matter abundance. This setup can be used to open parameter space for both heavy (above the unitarity bound) or light (sub-GeV) dark matter candidates. We point out that the best strategy for probing most parts of our parameter space is to look for signatures of an early matter-dominant epoch.