With hot and dry summers, the Mediterranean basin is affected by recurrent fires. While drought is the major driver of the seasonal and inter-annual fire distribution in its northern and mildest climate conditions, some extreme fire events are also linked to extreme winds or heat waves. The southern part of the Mediterranean basin is located at the driest range of the Mediterranean bioclimate and is influenced by Saharan atmospheric circulations, leading to extreme hot and dry episodes, called Sirocco, and potentially acting as a major contributor to fire hazard. The recently created fire database for Tunisia was used to investigate the ±10-day pre- and post-fire timeframe of daily weather conditions associated with fire events over the 1985–2006 period. Positive anomalies in minimum and maximum temperatures, negative anomalies in air relative humidity, and a preferential south-eastern wind during fire events were identified, which were characteristic of Sirocco winds. +7 °C anomalies in air temperature and −30% in relative air humidity were the critical thresholds for the most extreme fire conditions. In addition, meteorological anomalies started two days before fire events and lasted for three days after for large fires >400 ha, which suggests that the duration of the Sirocco event is linked with fire duration and final fire size. Lastly, the yearly number of intense Sirocco events better explained the inter-annual variability of burned area over the 1950–2006 period than summer drought based on Standardized Precipitation Evaporation Index (SPEI) indices.
Read full abstract