Eight-band one-shot MSFA (multispectral filter array) cameras are innovative technologies used to capture multispectral images by capturing multiple spectral bands simultaneously. They thus make it possible to collect detailed information on the spectral properties of the observed scenes economically. These cameras are widely used for object detection, material analysis, and agronomy. The evolution of one-shot MSFA cameras from 8 to 32 bands makes obtaining much more detailed spectral data possible, which is crucial for applications requiring delicate and precise analysis of the spectral properties of the observed scenes. Our study aims to develop models based on deep learning to estimate the spectral response of this type of camera and provide images close to the spectral properties of objects. First, we prepare our experiment data by projecting them to reflect the characteristics of our camera. Next, we harness the power of deep super-resolution neural networks, such as very deep super-resolution (VDSR), Laplacian pyramid super-resolution networks (LapSRN), and deeply recursive convolutional networks (DRCN), which we adapt to approximate the spectral response. These models learn the complex relationship between 8-band multispectral data from the camera and 31-band multispectral data from the multi-object database, enabling accurate and efficient conversion. Finally, we evaluate the images’ quality using metrics such as loss function, PSNR, and SSIM. The model evaluation revealed that DRCN outperforms others in crucial performance. DRCN achieved the lowest loss with 0.0047 and stood out in image quality metrics, with a PSNR of 25.5059, SSIM of 0.8355, and SAM of 0.13215, indicating better preservation of details and textures. Additionally, DRCN showed the lowest RMSE 0.05849 and MAE 0.0415 values, confirming its ability to minimize reconstruction errors more effectively than VDSR and LapSRN.