The elastohydrodynamic lubrication analysis was carried out in this study for a typical metal-on-metal hip-resurfacing prosthesis under a simple steady-state rotation. Both the Reynolds equation and the elasticity equation were coupled and solved numerically by the finite difference method. The finite element method was used to determine the elastic deformation of both the femoral and the acetabular components required for the lubrication analysis. The effect of the radial clearance between the femoral head and the acetabular cup on the predicted film thickness and pressure distribution was investigated. The predicted minimum lubricating film thickness was found to compare favourably with the prediction using the Hamrock and Dowson [J. Lubrication Technol. 100 (1978) 236] formula based on the assumption of ball-on-plane semi-infinite solids. This implies that the non-metallic materials such as bone and cement underlying the metallic components have a small effect on the predicted lubrication performance for the particular metal-on-metal hip-resurfacing prosthesis considered in this study. Under realistic physiological walking conditions, a decrease in the radial clearance from 150 to 50 μm resulted in a 137% increase in the predicted minimum film thickness from 19 to 45 nm. Consequently, given a surface roughness of 0.01 μm for both the metallic femoral and acetabular bearing surfaces, the predicted mixed lubrication regime for the larger clearance was changed to a full fluid film lubrication regime for the smaller clearance. This clearly highlighted the importance of the design and manufacturing parameters on the tribological performance of these hard-on-hard hip prostheses.