Cable bacteria exhibit a unique metabolism involving long-distance electron transport, significantly impacting elemental cycling in various sediments. These long filamentous bacteria are distributed circumglobally, suggesting an effective mode of dispersal. However, oxygen strongly inhibits their activity, posing a challenge to their dispersal through the water column. We investigated the effective dispersal of marine cable bacteria in a compartmentalised microcosm experiment. Cable bacteria were grown in natural 'source' sediment, and their metabolic activity was recorded in autoclaved 'destination' cores, which were only accessible through oxygenated seawater. Colonisation occurred over weeks, and destination cores contained only one cable bacterium strain. Filament 'snippets' (fragments with a median size of ~15 cells) accumulated in the microcosm water, with about 30% of snippets attached to sediment particles. Snippet release was also observed in situ in a salt marsh creek. This provides a model for the dispersal of cable bacteria through oxygenated water: snippets are formed by filament breakage in the sediment, released into the overlying water and transported with sediment particles that likely offer protection. These insights are informative for broader theories on microbial community assembly and prokaryotic biogeography in marine sediments.
Read full abstract