Figure-eight-shaped nonplanar π-systems adopt distinctive chiral D2-symmetric structures, which are ideal for realizing efficient circularly polarized luminescence (CPL). However, the short-step and enantioselective synthesis of figure-eight π-systems represents a considerable challenge for the conventional bottom-up synthetic strategy. Herein, we report that the oxidative cleavage of the internal double bond of a commercially available polycyclic aromatic hydrocarbon, i.e., dibenzo[g,p]chrysene (DBC), catalytically affords a figure-eight electron-accepting macrocycle, i.e., cyclobisbiphenylenecarbonyl (CBBC), with high scalability (up to 3.3 g) and excellent enantioselectivity (94% ee). This inner-bond-cleavage approach also applies to larger PAHs, affording highly distorted molecular frameworks that comprise two figure-eight subunits. Furthermore, we demonstrate that the peripheral functionalization of CBBC with carbazole afforded donor-acceptor-type emitter, which shows thermally activated delayed fluorescence and emits CPL with a g value of 1.0 × 10-2. This g value is ten times higher than those of previously reported chiral TADF-active emitters for circularly polarized organic light-emitting diodes. These results demonstrate that oxidative inner-bond cleavage is a powerful synthetic strategy for creating innovative materials that incorporate molecules with figure-eight structures.
Read full abstract