Recently, evidence for a conducting surface state (CSS) below 19 K was reported for the correlated d-electron small gap semiconductor FeSi. In the work reported herein, the CSS and the bulk phase of FeSi were probed via electrical resistivity ρ measurements as a function of temperature T, magnetic field B to 60 T, and pressure P to 7.6 GPa, and by means of a magnetic field-modulated microwave spectroscopy (MFMMS) technique. The properties of FeSi were also compared with those of the Kondo insulator SmB6 to address the question of whether FeSi is a d-electron analogue of an f-electron Kondo insulator and, in addition, a "topological Kondo insulator" (TKI). The overall behavior of the magnetoresistanceof FeSi at temperatures above and below the onset temperature TS = 19 K of the CSS is similar to that of SmB6. The two energy gaps, inferred from the ρ(T) data in the semiconducting regime, increase with pressure up to about 7 GPa, followed by a drop which coincides with a sharp suppression of TS. Several studies of ρ(T) under pressure on SmB6 reveal behavior similar to that of FeSi in which the two energy gaps vanish at a critical pressure near the pressure at which TS vanishes, although the energy gaps in SmB6 initially decrease with pressure, whereas in FeSi they increase with pressure. The MFMMS measurements showed a sharp feature at TS ≈ 19 K for FeSi, which could be due to ferromagnetic ordering of the CSS. However, no such feature was observed at TS ≈ 4.5 K for SmB6.
Read full abstract