BackgroundNoise-induced hearing loss is an occupational disease, and workplace noise exposure is a major hazard in Korea. Although hearing protectors effectively reduce a worker's exposure to noise, their success is compromised by the wearer's inability to fit the protectors correctly, and there are no proper training methods for using hearing protectors in small-scale industries. This study aims to evaluate the effect of earplug training on hearing protection using field microphone-in-real-ear (F-MIRE) and prevent noise-induced hearing loss.MethodsThe study population comprised 172 noise-exposed manufacturing workers who visited occupational health facilities in Daegu, South Korea, between July 2014 and September 2017. Personal attenuation ratings (PARs) were calculated with F-MIRE. Paired t-tests were used to compare the differences in PAR (dB) before and after training, and generalized estimating equations (GEEs) were used to compare the differences in PAR according to the number of trainings.ResultsMean PARs increased after the first and second training, and the differences were statistically significant. Among the 30 participants who received all 4 trainings, PARs were significantly higher after each training than before the training. As the number of training increased, the differences in PARs significantly increased. When comparing pretraining PARs for each training session, we found statistically significant differences between the first and second training and between the second and third training, but not between the third and fourth training.ConclusionIn this study, the short- and long-term effects of earplug training were statistically significant. In particular, the PAR before and after the fourth training showed the greatest increase, and the PARs continued to increase during each training.
Read full abstract