Phleboviruses transmitted by sandflies are among emerging public health threats. A novel Phlebovirus named Ntepes virus (NTPV) was recently described and found to infect humans from a wide geographic area in Kenya. However, the entomologic risk factors of this virus such as the potential vectors and the transmission cycles remain poorly defined. This study assessed the ability of the colonized sandfly Phlebotomus duboscqi to transmit NTPV and determined the bloodmeal host sources of field-collected sandflies from the area where NTPV was found in Baringo County, Kenya. Five-day old laboratory-reared P. duboscqi were orally challenged with an infectious dose of NTPV (≈106.0 pfu/ml) and incubated for up to 15 days postinfection. Individual sandflies were dissected into abdomens, legs, and salivary glands and screened for the virus infection by cell culture. Of the 205 virus-exposed sandflies, 19.5% developed non-disseminated infections in the midgut, with no evidence of virus dissemination or transmission in legs and salivary glands, respectively. The midgut infection rates decreased with increasing extrinsic incubation period (Spearman's correlation, ρ = −0.71). Blood-fed specimens analyzed by polymerase chain reaction (PCR) and sequencing of a region of the mitochondrial 12S rRNA, revealed almost exclusive feeding on humans (98%) represented by the sandflies Sergentomyia schwetzi, S. clydei, S. antennata, S. squamipleuris, S. africana, and Phlebotomus martini. One specimen of S. clydei had fed on cattle (2%). These findings suggest P. duboscqi is an incompetent laboratory vector of NTPV. The high human-feeding rate by diverse sandfly species increases the likelihood of human exposure to pathogens associated with these sandflies. Assessment of the susceptibility of Sergentomyia species to NTPV is recommended given their high human-feeding tendency.
Read full abstract