In rats polyvinyl alcohol sponge subcutaneous implants treated with gap junctional intercellular communications (GJIC) uncouplers showed reduced deposition of connective tissue. Do uncouplers inhibit the synthesis and deposition of a new connective tissue by fibroblasts? Confluent human dermal fibroblasts in serum-free medium received either endosulfan or oleamide, GJIC uncouplers. Collected media were subjected to Dot Blot analysis for native Type I collagen and fibronectin. Uncoupler-treated fibroblasts released less Type I collagen, while there was no change in fibronectin release. Collagen synthesis was restored to normal, when the uncouplers were removed, showing that these uncouplers were reversible and not toxic to cells. Northern blot analysis revealed procollagen alpha1 (I) mRNA was minimally affected by endosulfan. Oleamide-treated 17-day chick embryo calvaria explants were incubated with Type I collagen antibody, frozen, cryosectioned, and then subjected to rhodamine (Rh) tagged anti-mouse-IgG antibody, to detect newly deposited Type I collagen. Fluorescent antibody-collagen complexes were localized on the periphery of cells in control calvaria, but absent around cells in oleamide-treated calvaria. GJIC optimize collagen synthesis but not fibronectin synthesis. The lack of connective tissue deposited in granulation tissues treated with uncouplers appears related to the inhibition of collagen synthesis. These findings suggest that altering GJIC might control collagen deposition in scarring.