One of the major problems caused by repeated subcutaneous insulin injections in patients with diabetes is insulin amyloidosis. Understanding the molecular mechanism of amyloid fibril formation of insulin and finding effective compounds to inhibit or eliminate them is very important, and extensive research has been done on it. In this study, the anti-amyloidogenic and destabilizing effects of the pyrogallol, as a phenolic compound, on human insulin protein were investigated by CR absorbance, ThT and ANS fluorescence, FTIR spectroscopy, and atomic force microscopy. According to the obtained results, the formation of amyloid fibrils at pH2.0 and 50°C was confirmed by CR, ThT, ANS, and FTIR assays. Microscopic images also showed the twisted and long structures of amyloid fibrils. Simultaneous incubation of the protein with pyrogallol at different concentrations reduced the intensities of CR, ThT, and ANS in a dose-dependent manner, and no trace of fibrillar structures was observed in the microscopic images. FTIR spectroscopy also showed that the position of the amide I band in the spectrum of samples containing pyrogallol was shifted. Based on the findings of this study, it can be concluded that pyrogallol can be effective in preventing and suppressing human insulin amyloid fibrils. PRACTICAL APPLICATIONS: In recent years, finding a strategy for the treatment of amyloid diseases has been considered by many researchers. Targeting protein aggregates by small organic molecules such as polyphenols is one of the most desirable and effective strategies to prevent and improve amyloid disease, which has received much attention in recent years. 1,2,3-Trihydroxybenzene, commonly known as pyrogallol (Py), is a phenolic compound like other natural polyphenols that are present in human food sources, including fruits and vegetables, and a variety of edible and medicinal plants. So far, many beneficial activities for pyrogallol such as anti-cancer, antioxidant, antibacterial, antiviral, and antifungal have been reported in various studies. Since various studies have shown that natural polyphenols have special properties to prevent amyloid disease, the present study could be useful in advancing the design purposes of new anti-amyloid drugs in the future.