Aqueous zinc-ion batteries (ZIBs) have garnered remarkable attention owing to high safety, low price, environmental friendliness, and versatile adaptability. In this paper, we present the fabrication of a fiber-based ZIB using a slurry composed of ZnVOH and carbon black as the cathode material. This battery demonstrates high capacity and a robust bonding interface. Notably, the binding strength and uniformity of the slurry on the fiber surface play a pivotal role in energy-storage capabilities. Carbon black serves the dual purpose of providing a conductive medium and a viscosity adherence to the fiber surface. ZIBs containing 15 % carbon black exhibit a high capacity of 319.8 mAh g−1 at a current density of 0.5 A g−1. In addition, the fully solid-state fiber battery demonstrates superior electrochemical performance under various bending deformations coupled with optimized electrical conductivity. Importantly, its seamless integration with textiles underscores its potential for large-scale industrial production of flexible fiber-shaped ZIBs, providing a compelling solution for flexible energy storage.
Read full abstract