We investigate numerically the pattern formation in 2-μm thulium-doped Mamyshev fiber oscillators, associated with the dissipative Faraday instability. The dispersion-managed fiber ring oscillator is designed with commercial fibers, allowing the dynamics for a wide range of average dispersion regimes to be studied, from normal to near-zero cavity dispersion where the Benjamin–Feir instability remains inhibited. For the first time in the 2-μm spectral window, the formation of highly coherent periodic patterns is demonstrated numerically with rates up to ∼100 GHz. In addition, irregular patterns are also investigated, revealing the generation of rogue waves via nonlinear collision processes. Our investigations have potential applications for the generation of multigigahertz frequency combs. They also shed new light on the dissipative Faraday instability mechanisms in the area of nonlinear optical cavity dynamics.
Read full abstract