Honeycomb structures offer the benefits of being lightweight and having high out-of-face compressive stiffness, making them a popular choice for aerostructures. The present study delineates the design and active vibration control effect for fiber-reinforced cruciform honeycomb laminates (CHLs) characterized by variable parameters. Employing a continuous fiber 3D printer, carbon fiber filament and shape memory polymers (SMPs) were utilized in the fabrication of the specimens. Differential equations of motion for CHLs were deduced from Kirchhoff plate theory. To ascertain their frequency response, these laminates were subjected to a sinusoidal swept frequency excitation. Subsequently, the classical proportional integral derivative (PID) program was employed to scrutinize the efficacy of closed-loop active vibration control on CHLs. The investigation extended to analyzing the impact of active vibration control across laminates with disparate parameters, including an examination of the convergence speed during vibration control procedures. A comparative analysis of simulated versus experimental data revealed a substantial consonance between the two, thereby corroborating the accuracy of the experimental findings. This study offers crucial insights and reference value for the utilization of CHLs in the aerospace industry.
Read full abstract