The objectives of this research are (a) to establish a structural health monitoring system for bridge safety evaluation that is suitable for cold, remote regions and (b) to identify the bridge responses under variations in temperature. To achieve this, fiber optic sensors with temperature compensation were selected that were suitable for cold regions. This technique allows monitoring equipment to operate far from the sensor installation site, which avoids exposing much of the equipment to extremely cold temperatures and makes a power supply more accessible. The bridge temperature behavior is studied based on the real-time field measurement data, and the relationship between the thermal loading and the bridge response is presented.