Maternal anticoagulation use may increase indeterminate result rates on cell-free DNA-based screening, but existing studies are confounded by inclusion of individuals with autoimmune disease, which alone is associated with indeterminate results. Changes in chromosome level Z-scores are proposed by others as a reason for indeterminate results, but the etiology of this is uncertain. This study aimed to evaluate differences in fetal fraction, indeterminate result rate, and total cell-free DNA concentration in individuals on anticoagulation without autoimmune disease compared with controls undergoing noninvasive prenatal screening. Secondly, using a nested case-control design, we evaluated differences in fragment size, GC-content, and Z-scores to evaluate laboratory-level test characteristics. This was a retrospective single-institution study of pregnant individuals undergoing cell-free DNA-based noninvasive prenatal screening using low-pass whole-genome sequencing between 2017 and 2021. Individuals with autoimmune disease, suspected aneuploidy, and cases where fetal fraction was not reported were excluded. Anticoagulation included heparin-derived products (unfractionated heparin, low-molecular-weight heparin), clopidogrel, and fondaparinux, with a separate group for those on aspirin alone. An indeterminate result was defined as fetal fraction <4%. We evaluated the association between maternal anticoagulation or aspirin use, and fetal fraction, indeterminate results, and total cell-free DNA concentration using univariate and multivariate analyses, controlling for body mass index, gestational age at sample collection, and fetal sex. For the anticoagulation cohort, we compared laboratory-level test characteristics among cases (on anticoagulation) and a subset of controls. Lastly, we evaluated for differences in chromosome level Z-scores among those on anticoagulation with and without indeterminate results. A total of 1707 pregnant individuals met the inclusion criteria. Of those, 29 were on anticoagulation and 81 were on aspirin alone. For those on anticoagulation, the fetal fraction was significantly lower (9.3% vs 11.7%; P<.01), the indeterminate result rate was significantly higher (17.2% vs 2.7%; P<.001), and the total cell-free DNA concentration was significantly higher (218 pg/μL vs 83.7 pg/μL; P<.001). Among those on aspirin alone, the fetal fraction was lower (10.6% vs 11.8%; P=.04); however, there were no differences in the rate of indeterminate results (3.7% vs 2.7%; P=.57) or total cell-free DNA concentration (90.1 pg/μL vs 83.8 pg/μL; P=.31). After controlling for maternal body mass index, gestational age at sample collection, and fetal sex, anticoagulation was associated with an >8-fold increase in the likelihood of an indeterminate result (adjusted odds ratio, 8.7; 95% confidence interval, 3.1-24.9; P<.001), but not aspirin (adjusted odds ratio, 1.2; 95% confidence interval, 0.3-4.1; P=.8). Anticoagulation was not associated with appreciable differences in cell-free DNA fragment size or GC-content. Although differences in chromosome 13 Z-scores were observed, none were observed for chromosomes 18 or 21, and this difference did not contribute to the indeterminate result call. In the absence of autoimmune disease, anticoagulation use, but not aspirin, is associated with lower fetal fraction, higher total cell-free DNA concentration, and higher rates of indeterminate results. Anticoagulation use was not accompanied by differences in cell-free DNA fragment size or GC-content. Statistical differences in chromosome level Z-scores did not clinically affect aneuploidy detection. This suggests a likely dilutional effect by anticoagulation on cell-free DNA-based noninvasive prenatal screening assays contributing to low fetal fraction and indeterminate results, and not laboratory or sequencing-level changes.