A novel derivation of Feynman’s sum-over-histories construction of the quantum propagator using the groupoidal description of Schwinger picture of Quantum Mechanics is presented. It is shown that such construction corresponds to the GNS representation of a natural family of states called Dirac–Feynman–Schwinger (DFS) states. Such states are obtained from a q-Lagrangian function [Formula: see text] on the groupoid of configurations of the system. The groupoid of histories of the system is constructed and the q-Lagrangian [Formula: see text] allows us to define a DFS state on the algebra of the groupoid. The particular instance of the groupoid of pairs of a Riemannian manifold serves to illustrate Feynman’s original derivation of the propagator for a point particle described by a classical Lagrangian L.
Read full abstract