Parkinson's disease (PD) is a neurodegenerative disease, the most characteristic pathological feature is the progressive loss of dopaminergic (DA) neurons in the substantia nigra pars compactus (SNpc) of the mesencephalon, along with reduced dopamine content in the striatum. Researchers have been searching for drugs and therapies to treat PD in decades. However, no approach could stop the progression of the disease, and even some of them caused adverse clinical side effects. PD has a well-defined lesion. Therefore, it is considered to be one of the most curable central nervous system diseases by cell replacement treatment. Fetal ventral mesencephalic tissue transplantation has been used to treat patients with PD and obtained positive treatment results. However, ethical issues, such as limited donor tissue, and side effects including graft-induced dyskinesias, limit its clinical applications. Neural stem cell (NSC) transplantation is a viable therapy choice because it possesses multipotency, self-renewal ability, and differentiation into DA neurons, which may substitute for lost DA neurons and slow down the neurodegenerative process in PD. Studies that investigated the delivery of NSCs by using animal models of PD revealed survival, migration, and even amelioration of behavioral deficits. Here, the research progress of NSCs or NSC-derived DA neurons in treating PD was reviewed, and the practicability of present manufacturing processes for clinical testing was considered. This review is expected to offer ideas for practical strategies to solve the present technical and biological problems related to the clinical application of NSCs in PD.
Read full abstract