The renin-angiotensin system (RAS) is thought to regulate placentation, however, the expression and localization of RAS pathways in early gestation human placenta is not known. Here we describe the expression of prorenin (REN), (pro)renin receptor (ATP6AP2), angiotensinogen (AGT), angiotensin-converting enzyme 1 and 2 (ACE; ACE2), angiotensin II type 1 and 2 receptors (AGTR1; AGTR2) and angiotensin 1–7 receptor (MAS1), as well as the angiogenic factor, vascular endothelial growth factor (VEGF), and transforming growth factor-β1 (TGF-β1), in early gestation (6–16 weeks) and term (>37 weeks) human placentae. We also describe the location of all of the key RAS proteins in the early gestation placentae. The highest levels of REN, ATP6AP2, AGT, AGTR1 and ACE2 mRNAs were found in early gestation, whereas ACE1 mRNA was highest at term. AGTR2 and MAS1 mRNA expression were low to undetectable in all samples. REN, ATP6AP2 and AGTR1 mRNA levels were correlated with VEGF expression, but not with TGF-β1 mRNA. In early gestation placentae, prorenin, (pro)renin receptor and the angiotensin II type 1 receptor (AT1R) were localized to extravillous trophoblast cells, suggesting they play a key role in trophoblast migration. ACE2 in syncytiotrophoblasts could regulate release of Ang 1-7 into the maternal circulation contributing to the vasodilation of the maternal vasculature. ACE was only found in fetal vascular endothelium and may specifically target the growing fetal placental vessels. Because REN, ATP6AP2 and AGTR1 show strong correlations with expression of VEGF this pathway is likely to be important in placental angiogenesis.
Read full abstract