The Kangjiawan Pb-Zn deposit, situated within the Shuikoushan polymetallic ore field in Changning, Hunan Province, China, is a large-scale Pb-Zn deposit unearthed in 1976. Based on detailed geological field investigations, this study presents the results of the Rb-Sr isotopic dating, electron probe microanalyses (EPMAs), and LA-ICP-MS analyses of the Kangjiawan Pb-Zn deposit in order to determine the ore-forming age and the occurrence of trace elements in sphalerite and thereby constrain the genesis of the deposit. The Rb-Sr dating of quartz-hosted fluid inclusions yielded an Rb-Sr isochron age of 150 ± 4 Ma, with an initial 87Sr/86Sr ratio of 0.71101 ± 0.00008 (MSWD = 1.1), suggesting that the Pb-Zn mineralization of the Kangjiawan deposit took place during the Late Jurassic, coeval with the magmatic activities within the ore field. EPMA and LA-ICP-MS analyses showed that Fe, Mn, and Cd were primarily incorporated into the sphalerite lattice through isomorphous substitution. Specifically, Fe and Mn substituted for Zn, whereas Cd replaced both Fe and Zn. Other elements such as Cu, Sb, and Sn occurred within the sphalerite lattice through mineral micro-inclusions or isomorphic substitution. EPMAs and LA-ICP-MS results showed that the FeS contents in sphalerite were less than 14.33%, with corresponding ore-forming temperatures below 259 °C. The LA-ICP-MS results showed that sphalerites from the Kangjiawan Pb-Zn deposit had relatively high Ga/In ratios ranging from 0.01 to 144, providing further support for medium-to-low-temperature mineralization. The trace element compositions of sphalerites from the Kangjiawan Pb-Zn deposit exhibit skarn-type characteristics, suggesting a potential association with contemporary magmatic activities within the Shuikoushan ore field. During the Late Jurassic, extensive granitic magmatic activities occurred in the study area. At the late stage of magma crystallization, hydrothermal fluid containing Pb and Zn precipitated at medium-to-low temperatures and generated the Kangjiawan Pb-Zn deposit.
Read full abstract