Introducing point defects in complex metal oxides is a very effective route to engineer crystal symmetry and therefore control physical properties. However, the inversion symmetry breaking, which is vital for many tantalizing properties, such as ferroelectricity and chiral spin structure, is usually hard to be induced in the bulk crystal by point defects. By designing the oxygen vacancy formation energy profile and migration path across the oxide heterostructure, our first-principles density functional theory (DFT) calculations demonstrate that the point defects can effectively break the inversion symmetry and hence create novel ferroelectricity in superlattices consisting of otherwise nonferroelectric materials SrTiO3 and SrRuO3. This induced ferroelectricity can be significantly enhanced by reducing the SrTiO3 thickness. Inspired by theory calculation, SrTiO3/SrRuO3 superlattices were experimentally fabricated and are found to exhibit surprising strong ferroelectric properties. Our finding paves a simple and effective pathway to engineer the inversion symmetry and thus properties by point defect control in oxide heterostructures.
Read full abstract