We report sub-picosecond photocarrier dynamics observed via emitted terahertz waves in a ferroelectric semiconductor Sn2P2S6. Excitation photon energy, intensity and polarization dependences of the photocarrier dynamics testify that the ultrafast photocurrent originates from the shift-current under interband excitation. The photocurrent excitation spectrum shows a quantitative agreement with that derived from first-principles calculations with the Berry connection integrated, showing the shift-current to be a sensitive feature in ferroelectrics. The terahertz emission spectroscopy is a powerful tool to identify the intricate carrier dynamics under pulsed photoexcitation.
Read full abstract