The half-filled lowest Landau level is a fascinating platform for researching interacting topological phases. A celebrated example is the composite Fermi liquid, a non-Fermi liquid formed by composite fermions in strong magnetic fields1-10. Its zero-field counterpart is predicted in atwisted MoTe2 bilayer (tMoTe2)11,12-a recently discovered fractional Chern insulator exhibiting the fractional quantum anomalous Hall effect13-16. Although transport measurements at ν = -1/2 show signatures consistent with a zero-field composite Fermi liquid14, new probes are crucial to investigate the state and its elementary excitations. Here, by using the unique valley properties of tMoTe2, we report optical signatures of a zero-field composite Fermi liquid. We measured the degree of circular polarization (ρ) of trion photoluminescence versus hole doping and electric field. We found that, within the phase space showing robust ferromagnetism, ρ is near unity for Fermi liquid states. However, ρ is quenched at both integer andfractional Chern insulators, and in a holedoping range near ν = -1/2. Temperature, optical excitation power and electric-field-dependence measurements demonstrate that the quenching of ρ is a direct consequence of an energy gap (pseudogap) for electronic excitations of the Chern insulators (composite Fermi liquid): because the local spin-polarized excitations necessary to form trions are strongly suppressed, trion formation at the corresponding filling factors relies on optically generated unpolarized itinerant holes. Our work highlights a new excitonic probe of zero-field fractional Chern insulator physics, unique to tMoTe2.
Read full abstract