Polypyridyl transition-metal complexes are an intriguing class of compounds due to the relatively facile chemical designs and variations in ligand-field strengths that allow for spin-state changes and hence electronic configurations in response to external perturbations such as pressure and light. Light-activated spin-conversion complexes have possible applications in a variety of molecular-based devices, and ultrafast excited-state evolution in these complexes is of fundamental interest for understanding of the origins of spin-state conversion in metal complexes. Knowledge of the interplay of structure and valence charge distributions is important to understand which degrees of freedom drive spin-conversion and which respond in a favorable (or unfavorable) manner. To track the response of the constituent components, various types of time-resolved X-ray probe methods have been utilized for a broad range of chemical and biological systems relevant to catalysis, solar energy conversions, and functional molecular devices. In particular, transient soft X-ray spectroscopy of solvated molecules can offer complementary information on the detailed electronic structures and valence charge distributions of photoinduced intermediate species: First-row transition-metal L-edges consist of 2p-3d transitions, which directly probe the unoccupied valence density of states and feature lifetime broadening in the range of 100 meV, making them sensitive spectral probes of metal-ligand interactions. In this Account, we present some of our recent progress in employing picosecond and femtosecond soft X-ray pulses from synchrotron sources to investigate element specific valence charge distributions and spin-state evolutions in Fe(II) polypyridyl complexes via core-level transitions. Our results on transient L-edge spectroscopy of Fe(II) complexes clearly show that the reduction in σ-donation is compensated by significant attenuation of π-backbonding upon spin-crossover. This underscores the important information contained in transient metal L-edge spectroscopy on changes in the 3d orbitals including oxidation states, orbital symmetries, and covalency, which largely define the chemistry of these complexes. In addition, ligand K-edge spectroscopy reveals the "ligand view" of the valence charge density by probing 1s-2p core-level transitions at the K-edge of light elements such as nitrogen, carbon, and oxygen. In the case of Fe(II) spin-conversion complexes, additional details of the metal-ligand interactions can be obtained by this type of X-ray spectroscopy. With new initiatives in and construction of X-ray free-electron laser sources, we expect time-resolved soft X-ray spectroscopy to pave a new way to study electronic and molecular dynamics of functional materials, thereby answering many interesting scientific questions in inorganic chemistry and material science.
Read full abstract