Field relations as well as geochemical and petrologic studies of meta-igneous rocks assigned to the Pennsylvanian–Permian Petersburg batholith identify at least two distinct rock types: foliated metagranitoid gneiss and massive to porphyritic granite. Foliated metagranitoid gneiss of mostly granodioritic composition is geochemically distinct from associated massive and porphyritic granitic rocks. These gneissic rocks yield radiometric ages from ca. 425 Ma to ca. 403 Ma and document that many of the rocks assigned to the late Paleozoic Petersburg batholith are 100 m.y. older than the youngest portions of the composite batholith and are part of an earlier infrastructural terrane. Two samples of massive equigranular granite southwest of Petersburg, Virginia, yield ages of ca. 321 Ma and ca. 317 Ma, which are 15–20 m.y. older than ca. 300 Ma ages for porphyritic granite, massive granite, and monzodiorite near Richmond, Virginia. Geologic mapping shows that the Early Pennsylvanian granite southwest of Petersburg is separated from Late Pennsylvanian to early Permian granite near Richmond by a map-scale septum of Silurian–Devonian foliated metagranitoid gneiss, referred to herein as the informal Pocoshock Creek gneiss. Laser ablation–inductively coupled plasma–mass spectrometry data from one sample of a quartz-muscovite felsic schist xenolith show a peak age mode of ca. 529 Ma that we interpret to be the maximum depositional age. Inherited zircons from foliated metagranitoid gneiss and massive equigranular granite range from ca. 631 Ma to ca. 376 Ma, but many are Cambrian. Neoproterozoic–Cambrian quartz-muscovite felsic schist and amphibolite, Silurian–Devonian Pocoshock Creek gneiss, and Pennsylvanian–Permian granite comprise a fault-bounded terrane referred to herein as the Dinwiddie terrane. Ages of inherited cores in zircon from igneous rocks and limited detrital zircon geochronology suggest the terrane is of peri-Gondwanan affinity. U/Pb ages of healed fractures in zircon grains from foliated metagranitoid gneiss indicate low-grade deformation of the gneiss at ca. 378–376 Ma, while ca. 320–280 Ma rims on many grains record intrusion of late Paleozoic granite. The temperature-time-deformation history of the Dinwiddie terrane is distinct from the adjacent Goochland and Roanoke Rapids terranes. Orogen-scale dextral transpression likely translated the Dinwiddie terrane southward during the Alleghanian orogeny, at which time they were intruded by Pennsylvanian to Permian granite.
Read full abstract