Late-stage plagiogranites in the Oman-UAE ophiolite are frequently associated with layered and massive gabbro bodies, intrusive into the mid-crustal section of the ophiolite. This study reports persuasive field evidence from five different localities for magma-mingling between plagiogranites and melts with a mafic and dioritic composition. It is argued from these relationships that mafic and felsic magmas coexisted in the same magma chamber. On this basis it is suggested that the range of melt compositions is related by a process of fractional crystallisation. The plagiogranites are interpreted as the end-product of this fractionation process and the associated gabbros are thought to be related cumulates. The hypothesis is supported with geochemical evidence which shows from the major element chemistry a continuum of compositions between the most mafic and felsic endmembers (47.6–80.6 wt% SiO2). These compositions ‘capture’ the fractionation process in operation. Modelling these variations using the major and trace element chemistry indicates that the fractionating assemblage comprised olivine-clinopyroxene-plagioclase+/−amphibole and that some plagiogranites contained cumulus plagioclase. The mafic rocks associated with late stage plagiogranite formation are derived from a highly depleted mantle source, which implies melting of an already-depleted mantle. This is consistent with previous models for the origin of the Oman ophiolite and implies a supra-subduction setting for this phase of ocean crust evolution in this ophiolite.
Read full abstract