We used scanning electron microscopy (SEM) and transmission electron microscopy (TEM) to observe the oral organelle, cytopharynx, and subpellicular structure of a Dileptus sp. The main results were as follows: (a) the cytostome was located on the ventral surface of the base of the beak, surrounded by a periportal matrix that integrated 135 microtube bundles. When these microtube bundles contract, radially arranged into a disk, the cytostome was closed. When these microtube bundles were stretch, they fell into the cytostome and opens. The diameter of the cytostome was about 16 μm regardless of its closure or opening, indicating that the contraction or elongation of these microtube bundles did not change the size of the cytostome, which was only related to whether it blocked the cytostome, thus determining the opening and closing of the cytostome. There were many microtube bundles on two sides of the feeding trough, which could widen or narrow the feeding trough and facilitate beak feeding. (b) The cytopharynx was basket-like without a bottom with a diameter of about 6 μm and was woven from two kind fibers about 0.08 and 0.19 μm. (c) There were two types of extrusomes under the pellicle. Using transmission electron microscopy,the Type I extrusomes showed narrow and long egg shape, its cross section was circular which is composed by various electronic density of concentric. Using the scanning electron microscope, they were two slightly thin clavate, the length was about 5 μm, the diameter of the middle section was about 0.75 μm, and the diameter of the two ends was about 0.32 μm, they were distributed abundantly between the microtubule fasciculi which were located on both sides of the gap on the feeding groove. Using transmission electron microscopy, the Type II extrusomes showed egg shape. Using the scanning electron microscopy, they were about 1.6 × 0.8 μm in size, they were distributed abundantly under the body pellicle while rarely the proboscis. In addition, many different of developmental stages two types of extrusomes could be also seen in the cytoplasm. (d) There were very well-developed fibrous systems under the pellicle that were woven from fibers about 0.14 μm in diameter that attached to the pellicle and bound some organelles in the cytoplasm (e.g., mitochondria, extrusomes) and other structures to the cytoplasm and maintained cell morphology. The results of this study not only supplement and enrich the morphological contents of the Dileptus sp., but also provide the basis for the study of the taxonomy of the Dileptus sp. It also provides a new method for researchers to explore the morphology and structure of ciliate cells under the cortex by SEM.