The most bacterial cause of infectious diseases associated with diarrhea are enterotoxigenic and enterohemorrhagic Escherichia coli (ETEC and EHEC, respectively). These strains use colonization factors for the attachment to the human intestinal mucosa, followed by enterotoxins production that could induce more host damage. The Heat-labile enterotoxin (LT) and colonization factors (CFs) are momentous factors for the pathogenesis of ETEC. Also, Intimin and Shiga like toxin (STX) are the main pathogenic factors expressed by EHEC. Because of mucosal surfaces are the major entry site for these pathogens, oral immunization with providing the protective secretary IgA antibody (sIgA) responses in the mucosa, could prevent the bacterial adherence to the intestine. In this study oral immunogenicity of a synthetic recombinant protein containing StxB, Intimin, CfaB and LtB (SICL) was investigated. For specific expression in canola seeds, the optimized gene was cloned in to plant expression vector containing the Fatty Acid Elongase (FAE) promoter. The evaluation of the expression level in canola seeds was approximately 0.4% of total soluble protein (TSP). Following to oral immunization of mice, serum IgG and fecal IgA antibody responses induced. Caco-2 cell binding assay with ETEC shows that the sera from immunized mice could neutralize the attachment properties of toxigenic E. coli. The reduction of bacterial shedding after the challenge of immunized mice with E. coli O157:H7 was significant. The sera from immunized mice in the rabbit ileal loop experiment exhibited a significant decrease in the fluid accumulation compared to the control. The results indicate efficacy of the recombinant chimeric protein SICL in transgenic canola seed as an effective immunogen, which elicits both systemic and mucosal immune responses as well as protection against EHEC and ETEC adherence and toxicity.