With the explosive increase of information, recommendation system is applied in a variety of areas. However, the performance of recommendation system is limited due to issues such as data sparsity, cold starts and poor semantic understanding. In order to make full use of external information to assist recommendation, deeply mine the semantic information of review text and further improve the performance of recommendation system, a deep recommendation system based on knowledge graph and review text (Drs-kgrt) is proposed in this paper. In Drs-kgrt, knowledge graph, review text and the social records between users are used as auxiliary information to improve recommendation performance. Firstly, the review text is divided into user review text and item review text. BERT (Bidirectional Encoder Representation from Transformers) is used to accurately understand semantic information in user review text and the social records between users. The trust relationship between users and user preferences are fully mined to form user feature vectors. Secondly, BERT and knowledge graph entity recognition link technology are combined to extract item attribute feature entities and their associated entities. The fine-grained features of the items are analyzed to form item feature vectors. Thirdly, based on the scoring matrix, latent vectors of users and items are obtained by matrix decomposition. The deep features of users and items are generated based on user feature vectors, item feature vectors, latent vectors of users and items, the deep recommendation system is established to predict user scores for items. Finally, experiments are conducted on the Douban dataset and Amazon Movie Review dataset, the results show that the proposed algorithm can achieve better performance compared with other benchmark recommendation algorithms.
Read full abstract