In this paper, a bundle modification strategy is proposed for nonsmooth convex constrained minimization problems. As a result, a new feasible point bundle method is presented by applying this strategy. Whenever the stability center is updated, some points in the bundle will be substituted by new ones which have lower objective values and/or constraint values, aiming at getting a better bundle. The method generates feasible serious iterates on which the objective function is monotonically decreasing. Global convergence of the algorithm is established, and some preliminary numerical results show that our method performs better than the standard feasible point bundle method.