view Abstract Citations (150) References (100) Co-Reads Similar Papers Volume Content Graphics Metrics Export Citation NASA/ADS Line Strengths and Line-Strength Gradients in S0 Galaxies Fisher, David ; Franx, Marijn ; Illingworth, Garth Abstract Line strengths and their gradients in Mg, Fe, and Hβ have been determined for a sample of 20 S0 galaxies in order to study the stellar populations of their bulges and disks and to investigate their relationship to elliptical galaxies. Data are also presented for the elliptical galaxy NGC 1700 and the E/S0 NGC 3585. We find that S0 galaxies generally follow a similar, though possibly steeper, relationship between central Mg_2_ line strength and central velocity dispersion as found for elliptical galaxies. The S0 galaxies show no dependence between Fe line strengths and central velocity dispersion similar to the behavior observed in elliptical galaxies. The central Mg/Fe ratios in the luminous S0 galaxies show an overabundance of Mg to Fe with respect to solar element ratios. The disks (at 1 h) and bulges (at 1 r_e_) show Mg/Fe ratios lower than those found in the central regions. The magnitudes of the Mg and Fe line-strength gradients within the galaxies are found to be correlated, i.e., objects with steep Mg gradients have correspondingly large Fe gradients. We infer bulge and disk gradients for the nine most edge-on galaxies for which we have both major and minor-axis profiles. The metal line strengths decrease with radius along the major and minor axes in the bulge-dominated central regions. At larger radii, however, the major-axis metal line strength profiles flatten while the minor-axis bulge profiles fall to lower values. Representative color maps in B - R are presented that display a separation between bulge and disk colors corresponding to the metal line strength profiles. Based on our Mg_2_ profiles, the average metal gradient found in the disks of our sub-sample is {DELTA}[Fe/H]/{DELTA}(r/h) = -0.08 +/- 0.06, which corresponds to a reduction in the mean metallicity of the disk stellar population by <~ 15% per disk scale length (h). These shallow metallicity gradients are approximately a factor of 2-3 smaller than those derived for the disks of late-type spiral galaxies from H II regions and are consistent with previous investigations that showed a trend for disk metallicity gradients to decrease toward earlier Hubble types. As inferred from our Mg and Fe line strengths, the mean size of the bulge metallicity gradients is {DELTA}[Fe/H]/{DELTA}log r = - 0.7 +/- 0.4 which is steeper than typical elliptical galaxy gradients. Our findings do not support formation scenarios in which bulges formed either from heated disk material at late times after disk formation or through dissipationless stellar merging, as neither process includes mechanisms for producing the observed metallicity gradients. Our observations are better explained in terms of formation via dissipative collapse (or merging) at early times. Publication: The Astrophysical Journal Pub Date: March 1996 DOI: 10.1086/176873 Bibcode: 1996ApJ...459..110F Keywords: GALAXIES: ABUNDANCES; GALAXIES: ELLIPTICAL AND LENTICULAR; CD; GALAXIES: STELLAR CONTENT full text sources ADS | data products NED (26) SIMBAD (22) CDS (1)