Abstract The interaction between charge and spin degrees of freedom has always been the central issue of condensed matter physics, and transition metal dichalcogenides (TMDs) provide an ideal platform to study it benefiting from their highly tunable properties. In this article, the influence of Fe intercalation in NbSe2 was elaborately investigated using a combination of techniques. Magnetic studies have shown that the insertion of Fe atoms induces an antiferromagnetic state in which the easy axis aligned out of the plane. The sign reversal of the magnetoresistance across the Neel temperature can be satisfactorily explained by the moderate interaction between electrons and local spins. The Hall and Seebeck measurements reveal a multi-band nature, and the contribution of various phonon scattering processes is discussed based on the thermal conductivity and specific heat data.
Read full abstract