The low exposure of active sites and the slow electron transfer rate still restrict the wide application of the photo-Fenton system of Fe-based photocatalyst in practical water treatment. Herein, we prepared a hollow Fe-doped In2O3 nanotube (h-Fe-In2O3) catalyst for activating hydrogen peroxide (H2O2) to remove tetracycline (TC) and antibiotic resistant bacteria (ARB). Incorporation of Fe could shorten the band gap and increase the absorption capacity of visible light. Meanwhile, the increase of electron density at the Fermi level promotes the interfacial electron transport. The large specific surface area of the tubular structure exposes more Fe active site and the Fe-O-In site reduces the energy barrier of H2O2 activation, resulting in more and faster formation of hydroxyl radicals (•OH). After continuous operation for 600 min, the h-Fe-In2O3 reactor still can remove 85% TC and about 3.5 log ARB in secondary effluent, showing good stability and durability for practical wastewater treatment.
Read full abstract