In this study, microstructure, mechanical, and shape memory properties of the welded Fe-based shape memory alloy (Fe-SMA) plates with a nominal composition of Fe-17Mn-5Si-10Cr-4Ni-(V, C) (wt.%) by gas tungsten arc welding were investigated. The optimal heat input to ensure full penetration of the Fe-SMA plate with a thickness of 2 mm was found to be 0.12 kJ. The solidified grain morphology adjacent to the partially melted zone was columnar, whereas the equiaxed morphology emerged as solidification proceeded. The ultimate tensile decreased after welding owing to the much larger grain size of the fusion zone (FZ) and heat-affected zone (HAZ) than that of the base material (BM). Weldment showed lower pseudoelastic (PE) recovery strain and higher shape memory effect (SME) than those of the plate, which could be ascribed to the large grain size of the FZ and HAZ. Recovery stress (RS) slightly decreased after welding owing to lower mechanical properties of weldment. On the other hand, aging treatment significantly improved all PE recovery, SME, and RS via carbide precipitation. Digital image correlation analysis revealed that HAZ showed the lowest SME after heating and cooling, implying that the improved SME of FZ compensated for the low SME of the HAZ.
Read full abstract