[18F]-fluorodeoxyglucose ([18F]FDG) positron emission tomography (PET) plays a central role in diagnosing and managing cardiac sarcoidosis. We propose a fully automated pipeline for quantification of [18F]FDG PET activity using deep learning (DL) segmentation of cardiac chambers on computed tomography (CT) attenuation maps and evaluate several quantitative approaches based on this framework. We included consecutive patients undergoing [18F]FDG PET/CT for suspected cardiac sarcoidosis. DL segmented left atrium, left ventricular(LV), right atrium, right ventricle, aorta, LV myocardium, and lungs from CT attenuation scans. CT-defined anatomical regions were applied to [18F]FDG PET images automatically to target to background ratio (TBR), volume of inflammation (VOI) and cardiometabolic activity (CMA) using full sized and shrunk segmentations. A total of 69 patients were included, with mean age of 56.1 ± 13.4 and cardiac sarcoidosis present in 29 (42%). CMA had the highest prediction performance (area under the receiver operating characteristic curve [AUC] 0.919, 95% confidence interval [CI] 0.858 - 0.980) followed by VOI (AUC 0.903, 95% CI 0.834 - 0.971), TBR (AUC 0.891, 95% CI 0.819 - 0.964), and maximum standardized uptake value (AUC 0.812, 95% CI 0.701 - 0.923). Abnormal CMA (≥1) had a sensitivity of 100% and specificity 65% for cardiac sarcoidosis. Lung quantification was able to identify patients with pulmonary abnormalities. We demonstrate that fully automated volumetric quantification of [18F]FDG PET for cardiac sarcoidosis based on CT attenuation map-derived volumetry is feasible, rapid, and has high prediction performance. This approach provides objective measurements of cardiac inflammation with consistent definition of myocardium and background region.
Read full abstract