Multi rotor unmanned aerial vehicles (UAVs) are extensively utilized across various domains, and the motor constitutes a pivotal element in the UAV power system. The majority of UAV failures and crashes stem from motor malfunctions, underscoring the imperative need for comprehensive research on fault diagnosis in UAV motors to ensure the stable and reliable execution of flight tasks. This study focuses on quadrotor UAVs as the research subject and devises targeted fault simulation experiments based on the structural features and operational characteristics of the DC brushless motor used in quadrotor UAVs, specifically examining the stator, rotor, and bearings. To address challenges related to the UAV’s own loads, limited space for redundant parts, and the high cost and difficulty associated with installing sensors for traditional fault diagnostic signals such as vibration and temperature, this study opts to use current signals as a substitute. This approach resolves the issue of challenging data collection for UAVs and investigates a current signal based fault diagnosis method for UAV motors. Lastly, in response to the limited training samples available for fault data due to the UAV’s highly sensitive characteristics regarding the health status of its components and flight stability, traditional machine learning and deep learning methods encounter difficulties in identifying representative features with a small number of training samples, leading to the risk of overfitting and reduced model accuracy in fault diagnosis. To overcome this challenge, we propose a hybrid neural network fault diagnosis model that incorporates a width learning system and a convolutional neural network (CNN). The width learning system eliminates temporal characteristics from the original current signal, capturing more comprehensive and representative sample features in the width feature space. Subsequently, the CNN is employed for feature extraction and classification tasks. In empirical small sample fault diagnosis experiments using current signal data for UAV motors, our proposed model outperforms other models used for comparison.
Read full abstract