DC distribution network faults seriously affect the reliability of system power supply. Therefore, this paper proposes a fault recovery reconfiguration strategy for DC distribution networks, based on hybrid particle swarm optimization. The original particle swarm algorithm is improved by simplifying the distribution network structure, introducing Lévy Flight, and designing an adaptive coding strategy. First, the distribution network structure is equivalently simplified to reduce the problem dimensionality. Further, the generated branch groups are ensured to satisfy the radial constraints based on the adaptive solution strategy. Subsequently, Lévy flight is introduced to achieve intra-group optimality search for each branch group. The method is simulated in several distribution systems and analyzed in comparison with the particle swarm algorithm, genetic algorithm, and cuckoo algorithm. Finally, the results validate the accuracy and efficiency of the proposed method.