Abstract Wind turbine gearbox fault feature extraction is difficult due to strong background noise. To address this issue, a noise reduction method combining comprehensive learning particle swarm optimization-variational mode decomposition (CLPSO-VMD) and deep residual denoising self-attention autoencoder (DRDSAE) is proposed. Firstly, the proposed CLPSO-VMD algorithm is used to decompose the noisy wind turbine gearbox vibration signals. Subsequently, the intrinsic mode functions highly correlated with the original signals are selected through the Spearman correlation coefficient and utilized for signal reconstruction, thereby filtering out high-frequency noise outside the fault frequency band in the frequency domain characterization. Secondly, the improved DRDSAE is utilized to learn the latent representations of data in the first-level denoised signal, further reducing the residual noise within the fault frequency band while retaining important signal features. Finally, the envelope spectrum highlights the weak feature of the wind turbine gearbox vibration signal. Experimental results demonstrate the effectiveness of the proposed method in denoising wind turbine gearbox vibration signals under strong noise.
Read full abstract