Bearings are vital components in machinery, and their malfunction can result in equipment damage and reduced productivity. As a result, considerable research attention has been directed toward the early detection of bearing faults. With recent rapid advancements in machine learning algorithms, there is increasing interest in proactively diagnosing bearing faults by analyzing signals obtained from bearings. Although numerous studies have introduced machine learning methods for bearing fault diagnosis, the high costs associated with sensors and data acquisition devices limit their practical application in industrial environments. Additionally, research aimed at identifying the root causes of faults through diagnostic algorithms has progressed relatively slowly. This study proposes a cost-effective monitoring system to improve economic feasibility. Its primary benefits include significant cost savings compared to traditional high-priced equipment, along with versatility and ease of installation, enabling straightforward attachment and removal. The system collects data by measuring the vibrations of both normal and faulty bearings under various operating conditions on a test bed. Using these data, a deep neural network is trained to enable real-time feature extraction and classification of bearing conditions. Furthermore, an explainable AI technique is applied to extract key feature values identified by the fault classification algorithm, providing a method to support the analysis of fault causes.
Read full abstract