단층활동 과정에서 암석 내 화학조성과 광물 조성 간의 연관성을 이해하기 위한 목적으로 경주시 양북면 용당리에 발달하는 단층암에 대하여 XRF, ICP, XRD, EPMA/BSE 분석을 시행하여 단층암 내의 광물 조성 및 원소의 거동 경향성을 파악하였다. 단층암의 대표적인 주성분으로서 <TEX>$SiO_2$</TEX>는 61.6~71.0%의 범위로 가장 높은 함량을 나타내며, <TEX>$Al_2O_3$</TEX>는 10.8~15.8%이다. <TEX>$Na_2O$</TEX>는 0.22~4.63%, <TEX>$K_2O$</TEX>는 2.02~4.89%이고, <TEX>$Fe_2O_3$</TEX>는 3.80~12.5% 범위로 나타나 단층암 내에서 특히 이들 원소의 편차가 크다. 각력대에서 비지대로 갈수록 감소하는 경향을 나타내는 원소에는 <TEX>$Na_2O$</TEX>, <TEX>$Al_2O_3$</TEX>, <TEX>$K_2O$</TEX>, <TEX>$SiO_2$</TEX>, CaO, Ba, Sr 등이 있고, 증가하는 경향을 나타내는 원소에는 <TEX>$Fe_2O_3$</TEX>, MgO, MnO, Zr, Hf, Rb 등이 있다. 이러한 화학적 거동은 각력대가 대부분 석영, 장석류와 같은 주요 조암광물로 구성되는 반면, 비지대는 일라이트와 같은 점토광물이 다량 함유되는 것과 밀접한 관련성이 있다. 본 단층대에서는 기존 광물의 변질과 동시에 점토광물이 생성되는 데 있어 단층 활동에 수반된 유체활동이 큰 영향을 끼쳤다. 단층활동 초기에는 파쇄대가 열수의 통로로 작용하는 과정에서, 주원소 및 미량원소, 희토류원소는 기존 광물로부터 용탈되어 높은 원소 유동성을 나타내었으나, 파쇄대 중심부가 비지대로 점차 변화하는 과정에서는 이차적으로 형성된 점토광물로 인해 단층대의 투수성이 감소하고, 점토광물이 풍부해진 비지대 내에 농집되므로 낮은 원소 유동성을 가진 것으로 해석된다. This study is focused on element behaviors and mineral compositions of the fault rock developed in Yongdang-ri, Yangbuk-myeon, Gyeongju City, Korea, using XRF, ICP, XRD, and EPMA/BSE in order to better understand the chemical variations in fault rocks during the fault activity, with emphasis on dependence of chemical mobility on mineralogy across the fault zone. As one of the main components of the fault rocks, <TEX>$SiO_2$</TEX> shows the highest content which ranges from 61.6 to 71.0%, and <TEX>$Al_2O_3$</TEX> is also high as having the 10.8~15.8% range. Alkali elements such as <TEX>$Na_2O$</TEX> and <TEX>$K_2O$</TEX> are in the range of 0.22~4.63% and 2.02~4.89%, respectively, and <TEX>$Fe_2O_3$</TEX> is 3.80~12.5%, indicating that there are significant variations within the fault rock. Based on the chemical characteristics in the fault rocks, it is evident that the fault gouge zone is depleted in <TEX>$Na_2O$</TEX>, <TEX>$Al_2O_3$</TEX>, <TEX>$K_2O$</TEX>, <TEX>$SiO_2$</TEX>, CaO, Ba and Sr, whereas enriched in <TEX>$Fe_2O_3$</TEX>, MgO, MnO, Zr, Hf and Rb relative to the fault breccia zone. Such chemical behaviors are closely related to the difference in the mineral compositions between breccia and gouge zones because the breccia zone consists of the rock-forming minerals including quartz and feldspar, whereas the gouge zone consists of abundant clay minerals such as illite and chlorite. The alteration of the primary minerals leading to the formation of the clay minerals in the fault zone was affected by the hydrothermal fluids involved in fault activity. Taking into account the fact that major, trace and rare earth elements were leached out from the precursor minerals, it is assumed that the element mobility was high during the first stage of the fault activity because the fracture zone is interpreted to have acted as a path of hydrothermal fluids. Moving toward the later stage of fault activity, the center of the fracture zone was transformed into the gouge zone during which the permeability in the fault zone gradually decreased with the formation of clay minerals. Consequently, elements were effectively constrained in the gouge zone mostly filled with authigenic minerals including clay minerals, characterized by the low element mobility.