The purpose of this in vitro study was to evaluate the effect of staining, glazing, and polishing on the survival probability of monolithic crowns manufactured with preshaded stabilized zirconia with 5 mol% of yttrium oxide (5Y-TZP). Monolithic crowns in the shape of an upper canine (1.5 mm of thickness) were manufactured by CAD/CAM, adhesively cemented on metallic foundation, and divided into 6 groups (n = 21): C (control), S (staining), G (glazing), P (polishing), SG (staining and glazing), and SP (staining and polishing). The survival probability was determined by step-stress accelerated life testing with a load applied to the palatine concavity of the crown. First, the specimens were subjected to a single-load to fracture test (SLF) and next to the fatigue test (5 Hz, thermocycling immersed in water varying 5-55°C), including the light (n = 9), moderate (n = 6), and aggressive (n = 3) loading profiles (load ranged between 20% and 60% of SLF). The survival probability was calculated considering the cycles for failure (CFF) and fatigue failure load (FFL) and illustrated using a Kaplan-Meier graph. The comparison among groups was performed using a Log-Rank test (α = 0.05). The mean value of SLF was 586.7 N. There was no difference among groups in survival probability, considering CFF and FFL. Staining, glazing, and polishing can be performed safely without damaging the mechanical behavior of 5Y-TZP monolithic crowns. Staining is used to characterize and improve the esthetic of zirconia monolithic crowns. It can be used to reproduce the color gradient in the cervical region of the crown and pigmented grooves. This study showed that staining, glazing, and polishing did not affect the survival probability and the use of finishing procedures (glazing or polishing) after staining did not improve the survival probability of zirconia monolithic crowns.