The fastest mean (MVfastest) and peak (PVfastest) velocity in a set are used to predict the maximum number of repetitions (RTF), but stretch-shortening cycle (SSC) effects on these relationships are unknown. Velocity values associated with each RTF would show higher values for eccentric-concentric and multiple-point methods compared with concentric-only and 2-point methods. Cross-sectional study. Level 3. After determining the prone bench pull (PBP) 1-repetition maximum (1RM), 23 resistance-trained male participants randomly performed 2 sessions (1 for each PBP exercise), consisting of single sets of RTFs against 3 relative loads (60%-80%-70%1RM). Individualized RTF-velocity relationships were constructed using the multiple-point (60%-80%-70%1RM) and 2-point (60%-80%1RM) methods. Goodness-of-fit was very high and comparable for concentric-only (RTF-MVfastest, r2 = 0.97; RTF-PVfastest, r2 = 0.98) and eccentric-concentric (RTF-MVfastest, r2 = 0.98; RTF-PVfastest, r2 = 0.99) PBP exercises. Velocity values associated with different RTFs were generally higher for eccentric-concentric compared with concentric-only PBP exercise, but these differences showed heteroscedasticity (R2 ≥ 0.143). However, velocity values associated with different RTFs were comparable for the multiple- and 2-point methods (F ≤ 2.4; P ≥ 0.13). These results suggest that the inclusion of the SSC does not impair the goodness-of-fit of RTF-velocity relationships, but these relationships should be determined specifically for each PBP exercise (ie, concentric-only and eccentric-concentric). In addition, the 2-point method serves as a quick and less strenuous procedure to estimate RTF. Practitioners only need to monitor the MVfastest or PVfastest and the RTF from 2 (2-point method) or 3 (multiple-point method) sets performed to failure to construct an RTF-velocity relationship. Once these relationships have been established, coaches need only monitor the MVfastest or PVfastest of the set to estimate RTF against a given absolute load.