Versatile video coding (VVC), a new generation video coding standard, achieves significant improvements over high efficiency video coding (HEVC) due to its added advanced coding tools. Despite the fact that affine motion estimation adopted in VVC takes into account the translational, rotational, and scaling motions of the object to improve the accuracy of interprediction, this technique adds a high computational complexity, making VVC unsuitable for use in real-time applications. To address this issue, an adjacency encoding information-based fast affine motion estimation method for VVC is proposed in this paper. First, this paper counts the probability of using the affine mode in interprediction. Then we analyze the trade-off between computational complexity and performance improvement based on statistical information. Finally, by exploring the mutual exclusivity between skip and affine modes, an enhanced method is proposed to reduce interprediction complexity. Experimental results show that compared with the VVC, the proposed low-complexity method achieves 10.11% total encoding time reduction and 40.85% time saving of affine motion estimation with a 0.16% Bjøontegaard delta bitrate (BDBR) increase.