This work introduces ChemPlasKin, a freely accessible solver optimized for zero-dimensional (0D) simulations of chemical kinetics of neutral gas in non-equilibrium plasma environments. By integrating the electron Boltzmann equation solver, CppBOLOS, with the open-source combustion library, Cantera, at the source code level, ChemPlasKin computes time-resolved evolution of species concentration and gas temperature in a unified gas–plasma kinetics framework. The model allows high fidelity predictions of both chemical thermal effects and plasma-induced heating, including fast gas heating and slower vibrational–translational relaxation processes. Additionally, a new heat loss model is developed for nanosecond pulsed discharges, specifically within pin–pin electrode configurations. With its versatility, ChemPlasKin is well-suited for a wide range of applications, from plasma-assisted combustion (PAC) to fuel reforming. In this paper, the reliability, accuracy and efficiency of ChemPlasKin are validated through a number of test problems, demonstrating its utility in advancing gas–plasma kinetic studies.
Read full abstract