This article studies a class of uncertain nonlinear multiagent systems (MASs) with state restrictions. RBFNNs, or radial basis function neural networks, are utilized to estimate the uncertainty of the system. To approximate the unknown states and disturbances, the state observer and disturbance observer are proposed to resolve those issues. Moreover, a fast finite-time consensus control technique is suggested in order to accomplish fast finite-time stability without going against the full-state requirements. It is demonstrated that every signal could be stable and boundless, and an event-triggered controller is considered for the saving of resources. Ultimately, the simulated example demonstrates the validity of the developed approach.