Aim: Many food animal production facilities are sited close to human residence. This research work seeks to establish the occupational and environmental burdens of unsafe acts and conditions in backyard poultry production sites in the area of study in order to validate the compliance level of poultry farmers to common safety regulations.
 Place and Duration of Study: Microbiology Department, Ekiti State University, Ado-Ekiti, from February 2017 to December 2019.
 Methodology: A well-structured questionnaire was administered to farm managers and residents within the area of study. Data on poultry management attitudes and history of water use were collected. The coordinates of the poultry sites, natural water bodies, source area and their relative distances were determined using the Geographical System Information Software, Mapit GIS. Fecal droppings from poultry birds were randomly sampled with a sterile swab stick and transferred into a factory-packed polythene bag. The suspension of the fecal droppings was streaked on Eosin Methylene Blue agar plates and incubated at 37°C for 18-24 hours. Waste-water, soil from disposal sites, and poultry feed samples were also collected in sterile universal bottles, serially diluted and cultured. E. coli isolates were characterized using relevant biochemical tests. The modified paper disc-diffusion method was used to determine the isolates’ sensitivity to nine tested antibiotics. The results were interpreted based on the procedures of the clinical and laboratory standard institutes.
 Results: Majority of the poultry farms under survey, 83% adopted the intensive ranging system of farming while few adopted the free range system. Layers were the most reared, 50%. There was no documented health, safety and regulatory protocols used on all the farms leading to variations in poultry management practices. Accumulated poultry droppings were periodically disposed between 3-4 days into open fields, flowing water bodies and pits. Among the three adopted waste disposal options, disposal into open field was rampant, 67%. Also, some of the poultry farmers, 42% applied the collected poultry droppings as farm yard manure. Family members constitute the major labor force, 92% on the farm. There were contacts between few of the farmers and their clients during routine farm activities. Majority of the farmers, 83.3% were not kitted with commonly-used personal protective equipment while coverall was only used by few. The five natural water bodies found within the area of study were majorly used for agricultural, domestic, and, recreational purposes. There was history of diarrhea in respondents, 12% with exposure to the water bodies. Socio-demographic data show that young, married-males with tertiary education comprise the major farming population. The relative distance of poultry farms to residential site is ≤ 6 meters while the proximity of poultry farms to natural water sources is between 160 meters to 4,596 meters. Antibiotic sensitivity test shows that multiple antibiotic-resistant bacteria were present in poultry droppings, waste water and soil from poultry waste disposal sites. Bacterial resistance to the fluoroquinolones, sulphonamide, tetracycline, aminoglycoside and penicillin was high.
 Conclusion: The findings on unsafe act audit of the poultry production sites assert that safety of public health is dependent on the quality of water and soil found in human environment. Unsafe acts and conditions with the inherent occupational hazards in poultry production sites are attributed to non-functional health, safety and environment management system. Antibiotic resistant bacteria in poultry droppings constitute biological hazard to humans. Exposure to these biological hazards predisposes the public to infections. Human and environmental health can be improved by reviewing the national guidelines and standards for environmental pollution control.