We show that, for a class of planar determinantal point processes (DPP) {mathcal {X}}, the growth of the entanglement entropy S({mathcal {X}}(Omega )) of {mathcal {X}} on a compact region Omega subset {mathbb {R}}^{2d}, is related to the variance {mathbb {V}}left( {mathcal {X}}(Omega )right) as follows: VX(Ω)≲SX(Ω)≲VX(Ω).\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$\\begin{aligned} {\\mathbb {V}}\\left( {\\mathcal {X}}(\\Omega )\\right) \\lesssim S\\left( \\mathcal {X(} \\Omega \\mathcal {)}\\right) \\lesssim {\\mathbb {V}}\\left( {\\mathcal {X}}(\\Omega )\\right) . \\end{aligned}$$\\end{document}Therefore, such DPPs satisfy an area lawSleft( {mathcal {X}}_{g} mathcal {(}Omega mathcal {)}right) lesssim left| partial {Omega } right| , where partial {Omega } is the boundary of Omega if they are of Class I hyperuniformity ({mathbb {V}}left( {mathcal {X}} (Omega )right) lesssim left| partial {Omega }right| ), while the area law is violated if they are of Class II hyperuniformity (as Lrightarrow infty , {mathbb {V}}left( {mathcal {X}} (LOmega )right) sim C_{Omega }L^{d-1}log L). As a result, the entanglement entropy of Weyl–Heisenberg ensembles (a family of DPPs containing the Ginibre ensemble and Ginibre-type ensembles in higher Landau levels), satisfies an area law, as a consequence of its hyperuniformity.
Read full abstract