Cold fronts are meteorological phenomena that impact the northern Gulf of Mexico, mostly between the fall and spring seasons. On average, they pass the region every 3–7 days, with a duration ranging between 24 and 74 h. In the present study, a high-resolution FVCOM model with an unstructured mesh was used to simulate the effect of the fall cold front winds on water column mixing over the Louisiana shelf, which is often stratified in the summer, leading to hypoxia. Numerical experiments were conducted for October 2009, a period with five consecutive cold front events. Winds from an offshore station forced the model, while climatological temperature/salinity profiles prepared by NOAA for September were used for model initialization. The model performance was evaluated by comparing it with the surface current measurements at two offshore stations, and the results showed a good agreement between the model results and observations. Shelf mixing and stratification were investigated through examining the simulated sea surface temperature as well as the longitudinal and cross-shelf vertical sections. Simulation results showed a significant effect on shelf mixing, with the mixed layer depth increasing from the initial values of 5 m to 25 m at the end of simulation at different parts of the shelf, with maximum mixed layer depths corresponding to the peak of cold fronts. The buoyancy frequency, Richardson number, and the average potential energy demand (APED) for mixing the water column were used to quantify the stratification at two selected locations over the shelf. Results showed that all these parameters almost continuously decreased due to mixing induced by cold front wind events during this time. At the station off the Terrebonne Bay with a water depth of 20 m, the water column became fully mixed after three of the cold front events, with Richardson numbers smaller than 0.25 and approaching zero. This continued mixing trend was also proven by obtaining a decreasing trend of APED from 100 to 5 kg/m.s2 with several close to zero energy demand values.
Read full abstract